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Design of Microwave Filters by Inverse Scattering
Paul P. Roberts and Graham E. Town, Member, IEEE

Abstract-A new design method for planar microwave filters

based on the theory of inverse scattering is presented. The method
results in filters with a continuously changing profile, for example
a nonuniform microstrip line with continuously varying width.
Filters designed by this method are shown to possess some distinct

advantages in realization and performance over other common
techniques. The design method is presented in detail, and efficient
numerical algorithms to solve the design equations that arise are

discussed. A wideband 4 pole Chebyshev bandpass filter was

designed, constructed, and tested, to prove the design method.
This is the first demonstration of a microwave filter designed

using inverse scattering.

I. INTRODUCTION

T HE INVERSE scattering problem involves reconstruction

of the properties of a scatterer, such as shape or density,

from knowledge of its scattering data. The scattering data

commonly takes the form of the reflection or transmission

coefficient of the scatterer, as a function of wavelength. The

solution of the inverse problem results in the design of a

scatterer which realizes the specified frequency response. As

this is the central problem of filter design, inverse scattering

can be applied to the design of microwave filters. Inverse

scattering has previously been used in such diverse areas as

the design of corrugated waveguide filters [1], and the design

of selective excitation pulses for nuclear magnetic resonance

(NMR) imaging [2].

In this work the design of planar microwave filters will

be reduced to the inverse scattering problem for the one-

dimensional Schrodinger equation

d2y(w, X)

dx2
+ [U2 – q(z)] y(u,z) = o, (1)

in which y(w, x), the total normalized wave amplitude, is a

function of travel time, x, and frequency, w. The solution of

this equation for the potential q(x) has been studied exten-

sively by many authors since the pioneering work of Gel’fand

and Levitan [3] and Marchenko [4]. The essential results are

that given the reflection coefficient r(w) as input data, and

providing there are no poles of the reflection coefficient in the

upper half plane, it is required to solve the Gelfaud-Levitau-

Marchenko integral equation,

J

x

F(T + y) + K(Z, y) + K(s, z)~(y + z)dz = O, (2)
–Y
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where F(z) is the Fourier transform of the reflection coeffi -

cient

(3)

Once K(z, y) is determined, the potential q(x) is reconstructed

from

{

~dK(qz)
d.

q(x) =

o

The condition that r(w) have no

X>o,

(4)

X<o.

poles in the upper half

plane ensures that no bound states are present, corresponding

to poles lying on the positive imaginary axis, and also ensures

q(x) = O for x < 0, as can be seen from (4). Note that the

upper half plane in the Fourier transform domain (frequency

w) corresponds to the right hand plane in the Laplace transform

domain (complex frequency s) so the above restriction is net

strong since all stable networks will automatically satisfy the

requirement. A detailed account of inverse scattering theoqy

can be found in Ablowitz et al. [5], and references cite(d

therein.

II. FOUNDATIONS

The design procedure relies fundamentally upon the abili~y

to model a microwave transmission structure by an equivalent

transmission line supporting transverse electromagnetic (TEM)

waves. This is possible whenever the propagation within a

transmission structure is exactly or very nearly TEM. For-

tunately, the common microwave transmission geometries:

microstrip, stripline, coplanar waveguide and inverted mi-

crostrip usually satisfy this requirement, with microstrip being

closest to true TEM propagation. For all these structures the

standard method of analysis in any context is via the equivalent

TEM transmission line model. The model constitutes a line

with per unit length series inductance, shunt capacitance, series

resistance and shunt conductance at any point. In generaJ

the parameters may be a function of the position along the

transmission line. In physical terms this corresponds to, for

example, a microstrip line with a continuously variable width.

III. DESIGN THEORY

Propagation along the line may be described by the differ-

ential equations

g + (–jLdL(2) + R(z)p = o,

~ + (–JwC(Z) + G(.z))v = O (q

in which a complex exponential time dependence, exp( –jwt),

of the voltage and current on the transmission line has been
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assumed. Equation (5) models the transmission line in the

usual way using distributed elements, where L(z) and R(z).

C(z) and G(z). are the series distributed inductance and re-

sistance, and parallel distributed capacitance and conductance,

respectively. The inverse scattering problem for this system

has been solved by Jaulent [6] but the solution is found to

be underdetermined. It is necessary to specify the reflection

coefficients from both sides, the transmission coefficient and,

in addition, one further arbitrary relation between L(z), R(z),

C(z) and G(z). Under such conditions it is unclear whether a

unique and physically meaningful solution can be found at all.

In this work only lines which are lossless are considered, with

R(z) = G(z) = O. In this case only the reflection coefficient

or the transmission coefficient from one side need be specified

to obtain a unique solution.

To enable inverse scattering theory to be applied the lossless

form of the system (5) can be transformed so that it obeys the

Schrodinger equation. On eliminating the current variable, 1,

and making the change of variable

/
x = zJmmm”>

o

[1

c(x) +
7J(LJ,3) = — V(w, z),

L(x)
(b)

y(w, x), the total normalized wave amplitude, is now found to

satisfy the Schrodinger equation (1) with

‘(x)=[%31 -’:[%1$ ‘7)
In terms of the characteristic impedance of the line, the

scattering potential can be written equivalently as

[1~(z).m<J-dxzW“
The local wave speed is given by 1/ ~~,

variable x is the travel time for waves from the origin

(8)

so the

to po-

sition z. Note that the reflection coefficient in the transformed

system is identical to the reflection coefficient in the original

system, and is given by

,(W,3) = :[:::] = ;[:::; , (9)

where Y(W, X) = YI(W, x) + YZ(W, z), the sum of the normal-
ized amplitudes of the forward and backward going waves,

respectively.
Once the equations are in the form of the Schrodinger

equation (1), standard results of inverse scattering can be

applied. Thus if the desired reflection coefficient at the input

is specified (i.e. the frequency response of the filter), then the

potential q(x) can be constructed. Using (8) the characteristic

impedance as a function of travel time can be determined from

the potential q(z). Lastly, the required transmission structure

geometry can then be determined from the characteristic

impedance. The final result is a continuously nonuniform

transmission structure with the specified frequency response.

Because the characteristic impedance for a lossless line is a

real quantity the reconstructed potential must also be real. This

reality condition requires that the reflection coefficient satisfy

the additional constraint r(–~) = T*(w).

In general, the reconstructed potential q(x), though decaying

toward zero, will extend to infinity. Therefore a decision must

be made regarding when it is small enough to be ignored, i.e. at

which point the potential may be truncated. It was found that

the truncation error is a chief cause of differences between

the desired and obtained spectral responses. Windowing of

the original impulse response, for example by a half-gaussian

function, or one of the many standard window functions

developed in the context of digital signal processing, would

be expected to suppress truncation errors.

Consider now that a reconstructed potential q.(x), which is

necessarily finite in extent, has been determined. To find the

required characteristic impedance profile the following second

order differential equation must be solved

d2 W
= wqT(.C),~

where W(x) = 1/-.

(lo)

To obtain’ a practi~al filter design, it is necessary to choose

suitable boundary conditions in solving (10) for W(z). As

most microwave systems operate around a standard charac-

teristic impedance of 50 Q the first condition chosen would

usually be that the impedance at the beginning of the filter is

50 Q. The second boundary condition requires some more

thought. The simplest solution would be to set the first

derivative at the starting point to some value, say zero, and

integrate forward to the desired endpoint, but this is not

adequate. From (10) it is seen that beyond the truncation point

of q.(x), where it is taken as zero, the second derivative of

W(z) is zero. This implies that the first derivative of W(x)

is a constant. This constant however is not necessarily zero

and if it is not, W(z) will extend linearly to either positive

or negative infinity. To ensure that W(r) is constant beyond

the endpoint it is necessary to ensure that the first derivative

of W(x) is zero at this point.

As reflections occur only from points where the impedance

changes, a constant value of the impedance beyond the end-

point means the filter structure can be truncated at this point,

and a matched resistive load attached, without affecting the fre-

quency response. Thus a practical second boundary condition

is that dW/dx = O at the endpoint. This defines a two-point

boundary value problem which may be solved numerically by

the shooting method [7].

Once the solution W(x) is found, it is then a simple
matter to find the microstrip width (or other relevant pa-

rameter, depending on the implementation) corresponding to

the microstrip admittance or impedance by using well known

standard tables or design formulae such as those found in [8].

IV. INVARIANT FORM OF THE DESIGN EQUATIONS

The design equations can be cast in terms of normalized

variables under which the solution is invariant for any partic-

ular normalized frequency response. The entire design can be

carried out at a convenient frequency of 1 radls and the final

result for a particular cutoff frequency obtained by scaling

the length of this solution in inverse proportion to the cutoff
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frequency. Note that only the length of the final filter is

scaled. The impedance is unaltered. To prove these results

the following variables are introduced

U() ‘
x = Wox,

17(z,y) = &K(z,j). (11)

Transforming the design equations to these new variables

results in the following system of design equations

/

E
F(i + y) + R(z,g) + K(5> Z)F(Z + jj)dz = o

–v

d-
q(z) = 2% K(z, z)

d2W(z)

dz2
= W(?i?)q(z). (12)

These are now in a very convenient and useful form for design

purposes,

V. VERIFYING THE DESIGN

Once a design has been produced using the steps outlined

in section III, it is important to be able to verify that the

frequency response is as expected, independent of the design

method. It is also of interest to determine errors in the spectral

response caused by truncation, etc. From the lossless form

of the transmission line (5), a differential equation for the

reflection coefficient along the line can be derived [9]. This

equation is

(13)

where /3 is the propagation constant. As Z(x) is the known

design, (13) can readily be integrated numerically. At the

endpoint, where the matched resistive termination is located,

the reflection coefficient is zero due to the matched load. Hence

this is taken as the boundary condition and (13) is integrated

backward to the origin to determine the reflection coefficient

at the input to the filter. The spectral response of the filter

may be determined by repeating this process for a range of

frequencies.

VI. NUMERICAL SOLUTIONS

The design equations (12) cannot be solved analytically

except in a few special cases. Numerical solution methods are

thus usually required. Numerical algorithms for solving the

Gel’ fand- Levitan-Marchenko (GLM) integral equation for a

generat reflection coefficient have been published by several

authors, notably Kritikos et al. [10], and Frangos and Jaggard

[11], [12]. These methods, used in the work presented here, are

valid for all forms of the reflection coefficient, whether rational

or nonrational functions, and are based upon the method of

iterating the kernel of the integral equation.
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Fig. 1. Impedance profile atong the bandpass filter.
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Fig. 2. Microstrip conductor pattern for bandpass filter (not to state).

If the integral term in (2) is assumed to be small, a first

approximation gives

Ko(z, y) = –F(z + y). (14)

Subsequent approximations are generated using

/

z
K.(x> y) = –F(z + y) – Kn_~(x, .Z’)F(y + ,z)dz. (15)

–Y
The process is continued until the difference between two

successive iterations is less than some specified value.

Practically, a change of variables C = (x + Y)D and

rl = (x – Y)/2 is made and the < – q plane is discretised
to form a rectangular grid. A diagonal by diagonal iterative

solution is then undertaken. Full details can be found in the

previously cited references. When using the iterative method

it is important to ensure that the iterations are guaranteed to

converge. Szu et al. [13] showed that convergence is dependent

upon the decay properties of the impulse response, and gave

explicit relations for determining the stability of the iterations.

An alternative method for solving the GLM integral equa-

tion was given by Kay [14], and Szu et al. [13]. They
showed that an exact solution can be found when the reflecticm

coefficient is a rational function with no poles in the right-half

complex frequency plane.

VII. RESULTS

In order to verify the design method a reflective bandpms

filter was designed and constructed in microstrip. The filter

was a four pole Chebyshev type with 0.5 dB in-band ripple.

A 4070 bandwidth was specified and the centre frequency

was 2.2 GHz. Using the methods described in the previous

sections the result presented in Fig. 1 was obtained for the

impedance profile. The corresponding microstrip conductor

pattern is displayed in Fig. 2.

Note that the design was a bandpass filter in reflection,

which can be alternatively viewed as a bandstop filter in
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Fig. 3. Bandpass filter spectral response. (a) ---: theory: (b) —: measured.

transmission, and also that the filter must be terminated in a

matched load as described in the design theory. The microstrip

board used was RT Duroid with a relative permittivhy of

2.33 + 0.02 with a substrate thickness of 1.5875 mm. The

conductor pattern was etched onto the board using standard

PCB fabrication techniques,

A network analyser was used to measure the frequency

response of the filter. The magnitude response is presented in

Fig. 3. The agreement between the theoretical and measured

response is excellent. The main difference is the out-of-band

ripple, caused by truncation of the filter’s impulse reponse (a

longer filter would have displayed less ripple). It was found

that the out of band rejection was highly dependent on how

well the load was matched to the filter. Changing the matching

caused the out of band response to change markedly by up to

10 dB, but left the’ passband response virtually unchanged.

This behavior is to be expected because the undulations in the

profile should reflect frequencies in the passband before they

reach the load, while frequencies in the stop band are intended

to pass through the filter unimpeded and be absorbed by the

matched load.

The results verify the inverse scattering method used to

design the filter, and demonstrate the feasibility of filter

fabrication using this method. Other filter types could also

be produced, for example notch filters, provided the range of

impedance required to implement the filter is realizable, and

that TEM propagation is maintained over the bandwidth of

interest.

VIII. DISCUSSION

Note that the impedance profile of the filter shown in Fig. 1

appears closely related to the filter’s impulse response. This is

not entirely surprising, as it is easily shown that that inverse

scattering theory reduces to the linear Fourier transform theory

under conditions of weak coupling between the forward and

backward waves (i.e. small reflection coefficient, or Born ap-

proximation). In such cases the spectral and spatial dependence

of the reflection coefficient are a Fourier transform pair. In

practice strong coupling is usually desired, in which case
inverse scattering theory must be used to account for multiple

reflections within the filter structure.

In principle, it is possible to design filters by inverse

scattering which follow the prescribed frequency response

almost exactly, although such a filter would be relatively long

and, more importantly, dispersion in the microstrip would

degrade the response, as in other travelling-wave filters. In

practice, windowing must be used to limit the physical extent

of the filter, and to minimize truncation errors.

Filter synthesis by inverse scattering results in continuously

nonuniform traveling wave structures, and consequently can

realize filters with nonrational transfer functions, subject to

the conditions outlined in Sections I and III. This is in

contrast to most microwave filter designs (e.g. those based

on equivalent lumped element designs) which can only realize

rational transfer functions.

Another advantage of the inverse scattering method is that it

removes any necessity for making effective length corrections

to allow for sharp impedance discontinuities. This is a problem

with most current design methods. The inverse scattering

method results in smooth profiles and thus eliminates this

problem.

IX. CONCLUSION

A new method for microwave filter design based on the

theory of inverse scattering has been demonstrated. Filters

designed by inverse scattering possess several advantages over

other methods, namely: 1) a faithful frequency response over

a wide band; 2) no sharp impedance discontinttides: and

3) the ability to realize nonrational transfer functions. The

governing design equations were recast in a form that shows

the solution for any particular frequency to be a linear scaling

in length of the solution obtained for unit frequency. Design,

construction and testing of a 4-pole Chebyshev bandpass filter

was undertaken and the experimental results confirmed the

theory.
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