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Design of Microwave Filters by Inverse Scattering

Paul P. Roberts and Graham E. Town, Member, IEEE

Abstract— A new design method for planar microwave filters
based on the theory of inverse scattering is presented. The method
results in filters with a continuously changing profile, for example
a nonuniform microstrip line with continuously varying width.
Filters designed by this method are shown to possess some distinct
advantages in realization and performance over other common
technigques. The design method is presented in detail, and efficient
numerical algorithms to solve the design equations that arise are
discussed. A wideband 4 pole Chebyshev bandpass filter was
designed, constructed, and tested, to prove the design method.
This is the first demonstration of a microwave filter designed
using inverse scattering.

I. INTRODUCTION

HE INVERSE scattering problem involves reconstruction

of the properties of a scatterer, such as shape or density,
from knowledge of its scattering data. The scattering data
commonly takes the form of the reflection or transmission
coefficient of the scatterer, as a function of wavelength. The
solution of the inverse problem results in the design of a
scatterer which realizes the specified frequency response. As
this is the central problem of filter design, inverse scattering
can be applied to the design of microwave filters. Inverse
scattering has previously been used in such diverse areas as
the design of corrugated waveguide filters [1], and the design
of selective excitation pulses for nuclear magnetic resonance
(NMR) imaging [2].

In this work the design of planar microwave filters will
be reduced to the inverse scattering problem for the one-
dimensional Schrddinger equation
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in which y(w,x), the total normalized wave amplitude, is a
function of travel time, z, and frequency, w. The solution of
this equation for the potential g(z) has been studied exten-
sively by many authors since the pioneering work of Gel’fand
and Levitan [3] and Marchenko [4]. The essential results are
that given the reflection coefficient r(w) as input data, and
providing there are no poles of the reflection coefficient in the
upper half plane, it is required to solve the Gelfand-Levitan-
Marchenko integral equation,
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where F'(z) is the Fourier transform of the reflection coeffi-
cient
1 [>.%
Fz) = . /_Oo r(w)e “Tdw. (3)

Once K (z,y) is determined, the potential g(«) is reconstructed
from

22Klem) 4 >0,
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0 z<0.

The condition that r{w) have no poles in the upper half
plane ensures that no bound states are present, corresponding
to poles lying on the positive imaginary axis, and also ensures
g(z) = 0 for z < 0, as can be seen from (4). Note that the
upper half plane in the Fourier transform domain (frequency
w) corresponds to the right hand plane in the Laplace transform
domain (complex frequency s) so the above restriction is not
strong since all stable networks will automatically satisfy the
requirement. A detailed account of ‘inverse scattering theory
can be found in Ablowitz et al. [5], and references cited
therein.

II. FOUNDATIONS

The design procedure relies fundamentally upon the ability
to model a microwave transmission structure by an equivalent
transmission line supporting transverse electromagnetic (TEM)
waves. This is possible whenever the propagation within a
transmission structure is exactly or very nearly TEM. For-
tunately, the common microwave transmission geometries:
microstrip, stripline, coplanar waveguide and inverted mi-
crostrip usually satisfy this requirement, with microstrip being
closest to true TEM propagation. For all these structures the
standard method of analysis in any context is via the equivalent
TEM transmission line model. The model constitutes a line
with per unit length series inductance, shunt capacitance, series
resistance and shunt conductance at any point. In general
the parameters may be a function of the position along the
transmission line. In physical terms this corresponds to, for
example, a microstrip line with a continuously variable width.

II. DESIGN THEORY

Propagation along the line may be described by the differ-
ential equations

% + (—ywL(z) + R(2))I = 0,
% + (—wC(z) + G(2))V =0 5)

in which a complex exponential time dependence, exp(—jwt),
of the voltage and current on the transmission line has been
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assumed. Equation (5) models the transmission line in the
usual way using distributed elements, where L(z) and R(z).
C(z) and G(z). are the series distributed inductance and re-
sistance, and parallel distributed capacitance and conductance,
repectively. The inverse scattering problem for this system
has been solved by Jaulent [6] but the solution is found to
be underdetermined. It is necessary to specify the reflection
coefficients from both sides, the transmission coefficient and,
in addition, one further arbitrary relation between L(z), R(z),
C(z) and G(z). Under such conditions it is unclear whether a
unique and physically meaningful solution can be found at all.
In this work only lines which are lossless are considered, with
R(z) = G(z) = 0. In this case only the reflection coefficient
or the transmission coefficient from one side need be specified
to obtain a unique solution.

To enable inverse scattering theory to be applied the lossless
form of the system (5) can be transformed so that it obeys the
Schrédinger equation. On eliminating the current variable, I,
and making the change of variable

- /0 * /ICTw)du,

C(z)
y(w, z), the total normalized wave amplitude, is now found to
satisfy the Schrodinger equation (1) with
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In terms of the characteristic impedance of the line, the
scattering potential can be written equivalently as
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The local wave speed is given by 1//(L(z)C(%)), so the

variable x is the travel time for waves from the origin to po-

sition z. Note that the reflection coefficient in the transformed

system is identical to the reflection coefficient in the original
system, and is given by
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where y(w,z) = y1(w, ) + y2(w, ), the sum of the normal-
ized amplitudes of the forward and backward going waves,
respectively.

Once the equations are in the form of the Schrodinger
equation (1), standard results of inverse scattering can be
applied. Thus if the desired reflection coefficient at the input
is specified (i.e. the frequency response of the filter), then the
potential g(z) can be constructed. Using (8) the characteristic
impedance as a function of travel time can be determined from
the potential ¢(z). Lastly, the required transmission structure
geometry can then be determined from the characteristic
impedance. The final result is a continuously nonuniform
transmission structure with the specified frequency response.

Because the characteristic impedance for a lossless line is a
real quantity the reconstructed potential must also be real. This

reality condition requires that the reflection coefficient satisfy
the additional constraint 7(—w) = r*(w).

In general, the reconstructed potential g(z), though decaying
toward zero, will extend to infinity. Therefore a decision must
be made regarding when it is small enough to be ignored, i.e. at
which point the potential may be truncated. It was found that
the truncation error is a chief cause of differences between
the desired and obtained spectral responses. Windowing of
the original impulse response, for example by a half-gaussian
function, or one of the many standard window functions
developed in the context of digital signal processing, would
be expected to suppress truncation etrors.

Consider now that a reconstructed potential g,.(z), which is
necessarily finite in extent, has been determined. To find the
required characteristic impedance profile the following second
order differential equation must be solved

d*w
dz?
where W(z) = 1/\/Z(x).

To obtain a practical filter design, it is necessary to choose
suitable boundary conditions in solving (10) for W(z). As
most microwave systems operate around a standard charac-
teristic impedance of 50  the first condition chosen would
usually be that the impedance at the beginning of the filter is
50 €. The second boundary condition requires some more
thought. The simplest solution would be to set the first
derivative at the starting point to some value, say zero, and
integrate forward to the desired endpoint, but this is not
adequate. From (10) it is seen that beyond the truncation point
of g.(x), where it is taken as zero, the second derivative of
W (z) is zero. This implies that the first derivative of W{z)
is a constant. This constant however is not necessarily zero
and if it is not, W(z) will extend linearly to either positive
or negative infinity. To ensure that W {x) is constant beyond
the endpoint it is necessary to ensure that the first derivative
of W(z) is zero at this point.

As reflections occur only from points where the impedance
changes, a constant value of the impedance beyond the end-
point means the filter structure can be truncated at this point,
and a matched resistive load attached, without affecting the fre-
quency response. Thus a practical second boundary condition
is that dW/dx = 0 at the endpoint. This defines a two-point
boundary value problem which may be solved numerically by
the shooting method [7].

Once the solution W(z) is found, it is then a simple
matter to find the microstrip width (or other relevant pa-
rameter, depending on the implementation) corresponding to
the microstrip admittance or impedance by using well known
standard tables or design formulae such as those found in [8].

= Wq,(x), (10)

IV. INVARIANT FORM OF THE DESIGN EQUATIONS

The design equations can be cast in terms of normalized
variables under which the solution is invariant for any partic-
ular normalized frequency response. The entire design can be
carried out at a convenient frequency of 1 rad/s and the final
result for a particular cutoff frequency obtained by scaling
the length of this solution in inverse proportion to the cutoff
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frequency. Note that only the length of the final filter is
scaled. The impedance is unaltered. To prove these results
the following variables are introduced

_ w

w=—,
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Transforming the design equations to these new variables
results in the following system of design equations

F(z+9)+ K(z,9) + /x Kz 2)F(z+i)dz=0
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These are now in a very convenient and useful form for design
purposes.

V. VERIFYING THE DESIGN

Once a design has been produced using the steps outlined
in section III, it is important to be able to verify that the
frequency response is as expected, independent of the design
method. It is also of interest to determine errors in the spectral
response caused by truncation, etc. From the lossless form
of the transmission line (5), a differential equation for the
reflection coefficient along the line can be derived [9]. This
equation is
dr(B, =)

x

) 236r(8,) + 5 (1 - (8, 2)

dIn(Z(z)) ~0
dx o
(13)

where (3 is the propagation constant. As Z(x) is the known
design, (13) can readily be integrated numerically. At the
endpoint, where the matched resistive termination is located,
the reflection coefficient is zero due to the matched load. Hence
this is taken as the boundary condition and (13) is integrated
backward to the origin to determine the reflection coefficient
at the input to the filter. The spectral response of the filter
may be determined by repeating this process for a range of
frequencies.

VI. NUMERICAL SOLUTIONS

The design equations (12) cannot be solved analytically
except in a few special cases. Numerical solution methods are
thus usually required. Numerical algorithms for solving the
Gel’fand- Levitan-Marchenko (GL.M) integral equation for a
general reflection coefficient have been published by several
authors, notably Kritikos et al. [10], and Frangos and Jaggard
[11], [12]. These methods, used in the work presented here, are
valid for all forms of the reflection coefficient, whether rational
or nonrational functions, and are based upon the method of
iterating the kernel of the integral equation.
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Fig. 1. Impedance profile along the bandpass filter.
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Fig. 2. Microstrip conductor pattern for bandpass filter (not to scale).

If the integral term in (2) is assumed to be small, a first
approximation gives

Ko(z,y) = —F(z +y).

Subsequent approximations are generated using

Kn(z,y) = ~F(z +y) —/ K, 1(z,2)F(y+ z)dz. (13)
-y

(14)

The process is continued until the difference between two
successive iterations is less than some specified value.

Practically, a change of variables { = (z + y)/2 and
n = (z — y)/2 is made and the ¢ — » plane is discretised
to form a rectangular grid. A diagonal by diagonal iterative
solution is then undertaken. Full details can be found in the
previously cited references. When using the iterative method
it is important to ensure that the iterations are guaranteed to
converge. Szu et al. [13] showed that convergence is dependent
upon the decay properties of the impulse response, and gave
explicit relations for determining the stability of the iterations.

An alternative method for solving the GLM integral equa-
tion was given by Kay [14], and Szu et al. [13]. They
showed that an exact solution can be found when the reflection
coefficient is a rational function with no poles in the right-half
complex frequency plane.

VII. RESULTS

In order to verify the design method a reflective bandpass
filter was designed and constructed in microstrip. The filter
was a four pole Chebyshev type with 0.5 dB in-band ripple.
A 40% bandwidth was specified and the centre frequency
was 2.2 GHz. Using the methods described in the previous
sections the result presented in Fig. 1 was obtained for the
impedance profile. The corresponding microstrip conductor
pattern is displayed in Fig. 2.

Note that the design was a bandpass filter in reflection,
which can be alternatively viewed as a bandstop filter in
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Fig. 3. Bandpass filter spectral response. (a) - - -: theory: (b) —: measured.

transmission, and also that the filter must be terminated in a
matched load as described in the design theory. The microstrip
board used was RT Duroid with a relative permittivity of
2.33 £ 0.02 with a substrate thickness of 1.5875 mm. The
conductor pattern was etched onto the board using standard
PCB fabrication techniques.

A petwork analyser was used to measure the frequency
response of the filter. The magnitude response is presented in
Fig. 3. The agreement between the theoretical and measured
response is excellent. The main difference is the out-of-band
ripple, caused by truncation of the filter’s impulse reponse (a
longer filter would have displayed less ripple). It was found
that the out of band rejection was highly dependent on how
well the load was matched to the filter. Changing the matching
caused the out of band response to change markedly by up to
10 dB, but left the' passband response virtually unchanged.
This behavior is to be expected because the undulations in the
profile should reflect frequencies in the passband before they
reach the load, while frequencies in the stop band are intended
to pass through the filter unimpeded and be absorbed by the
matched load.

The results verify the inverse scattering method used to
design the filter, and demonstrate the feasibility of filter
fabrication using this method. Other filter types could also
be produced, for example notch filters, provided the range of
impedance required to implement the filter is realisable, and
that TEM propagation is maintained over the bandwidth of
interest.

VIII. DISCUSSION

Note that the impedance profile of the filter shown in Fig. 1
appears closely related to the filter’s impulse response. This is
not entirely surprising, as it is easily shown that that inverse
scattering theory reduces to the linear Fourier transform theory
under conditions of weak coupling between the forward and
backward waves (i.e. small reflection coefficient, or Born ap-
proximation). In such cases the spectral and spatial dependence
of the reflection coefficient are a Fourier transform pair. In
practice strong coupling is usually desired, in which case
inverse scattering theory must be used to account for multiple
reflections within the filter structure.

In principle, it is possible to design filters by inverse
scattering which follow the prescribed frequency response
almost exactly, although such a filter would be relatively long

and, more importantly, dispersion in the microstrip would
degrade the response, as in other travelling-wave filters. In
practice, windowing must be used to limit the physical extent
of the filter, and to minimize truncation errors.

Filter synthesis by inverse scattering results in continuously
nonuniform travelling wave structures, and consequently can
realize filters with nonrational transfer functions, subject to
the conditions outlined in Sections I and III. This is in
contrast to most microwave filter designs (e.g. those based
on equivalent lumped element designs) which can only realize
rational transfer functions.

Another advantage of the inverse scattering method is that it
removes any necessity for making effective length corrections
to allow for sharp impedance discontinuities. This is a problem
with most current design methods. The inverse scattering
method results in smooth profiles and thus eliminates this
problem.

IX. CONCLUSION

A new method for microwave filter design based on the
theory of inverse scattering has been demonstrated. Filters
designed by inverse scattering possess several advantages over
other methods, namely: 1) a faithful frequency response over
a wide band; 2) no sharp impedance discontinuities: and
3) the ability to realize nonrational transfer functions. The
governing design equations were recast in a form that shows
the solution for any particular frequency to be a linear scaling
in length of the solution obtained for unit frequency. Design,
construction and testing of a 4-pole Chebyshev bandpass filter
was undertaken and the experimental results confirmed the
theory.
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